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Analytic Solutions of Linearized Lattice Boltzmann
Equation for Simple Flows
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A general procedure to obtain analytic solutions of the linearized lattice
Boltzmann equation for simple flows is developed. As examples, the solutions
for the Poiseuille and the plane Couette flows in two-dimensional space are
obtained and studied in detail. The solutions not only have a component which
is the solution of the Navier-Stokes equation, they also include a kinetic com-
ponent which cannot be obtained by the Navier—Stokes equation. The kinetic
component of the solutions is due to the finite-mean-free-path effect. Com-
parison between the analytic results and the numerical results of lattice-gas
simulations is made, and they are found to be in accurate agreement.

KEY WORDS: Lattice Boitzmann equation; lattice-gas automata; linearized
lattice Boltzmann equation; analytic solutions for the plane Couette and the
Poiseuille flows; slip at wall.

I. INTRODUCTION

Recently, there has been a considerable effort in studying the linearized lat-
tice Boltzmann equation (LLBE)"' * in the context of lattice gas automata
(LGA)®® and the lattice Boltzmann equation (LBE).""®® The emphases
of previous studies on LLBE have been on the generalized hydrodynamics
of LGA and LBE, or the dispersion relations of transport coefficients
depending of the wave-vector k. It has been shown that LLBE can be used
as an effective tool to analyze the validity, as well as the artifacts, of the
LGA and LBE hydrodynamics in a quantitative fashion.!'-?
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Another useful application of LLBE is to obtain the analytic solutions
for simple flows.!"->’ The solutions of LLBE not only contain a component
that is the solution of Navier-Stokes equation, but also include a compo-
nent that is a manifestation of kinetic effect. In this paper, a general proce-
dure to obtain analytic solutions of LLBE is developed. Section II briefly
introduces LBE and its hydrodynamics. Section III discusses LLBE.
Section IV provides two solutions of LLBE for the Poiseuille flow and
the plane Couette flow. Section V presents the numerical results of LGA
simulations for the Poiseuille flow and the plane Couette flow. The com-
parison between the analytic results and the numerical results of lattice-gas
simulations is made. Section VI discusses the results and related issues.
Finally, an Appendix is included to provide relevant results of the Discrete
Fourier Transform used in the Section IV.

Il. LATTICE BOLTZMANN EQUATION AND ITS
HYDRODYNAMICS

The first LBE model''” is a straightforward floating-point-number
counterpart of the Frisch, Hasslacher, and Pomeau (FHP) LGA model!®®;

Sx+é 1+ 1) =[x, 1)+Q, (1)

where é,=cos[(a—1)r/3] % +sin[(«—1)7/3]p,ae{l,2,.,b}, are the
velocity vectors along the links of the triangular lattice, b is the number of
the velocities é, and is equal to 6 for FHP 6-bit models, and Q is the colli-
sion operator. The collision operator 2 in the LBE, Eq. (1), is obtained by
replacing the particle number n, (n, € {0, 1} ) by the single particle distribu-
tion function f, (f, = (n,)> €[0, 1]) in the corresponding LGA model. This
approximation is called the Boltzmann molecular chaos (Stosszahlansatz)
or random phase approximation. The replacement of n, by f, is justified
because the correlations among the »,’s are normally negligible and unim-
portant for hydrodynamic models.

It can be shown that,'“® with the Chapman-Enskog procedure and
certain approximations, one can derive the Navier-Stokes equation from
Eq. (1):

Ou 1
—+glp)uVu= —=VP+vwWu (2)
ot p
where v is the kinetic viscosity depending on the eigenvalues of the collision
operator £2,'"*? and the factor g(p) reflects the lack of Galilean invariance
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in LGA models at microscopic level, but Galilean invariance can be
restored by rescaling ¢, v, and P.% 2

In the situation where a constant body force (or gravity), F, is present,
the Navier-Stokes equation becomes:

F 1 1
M g(p)u- V= —VP+vVu+-F (3)
ot p p

The corresponding forcing scheme in the LBE method,
Slx+é, 1+ 1)=[f(x,1)+Q,+F, (4)

must satisfy the following criteria:

Y F,=0 (5a)
Zé:x.iFa=Fi (Sb)
Y é, é, F,=0 (5¢)

where the Latin subscript i or j denotes the Cartesian coordinate x or y.
For FHP 6-bit models one choice of F, satisfying the above criteria is:

F1=§F°e‘1 (6)

where b =6, and D is the dimension of the space.

lll. LINEARIZED LATTICE BOLTZMANN EQUATION
Assuming that f(x, t)=d(1+¢,x, t)) with |¢,| <1, where d is the
equilibrium density per direction at zero mean velocity, we can linearize
Eq. (1) to obtain
¢ex(x+éaut+1)=¢:x(x’ t)+ZJ]1/i¢/!(x’ t) (7)
]

where J is the Jacobian matrix of Q.
The Fourier transform of Eq. (7) in space is

Gk, t+1)=e® &Y (8,4 0,,) G4k, 1) (8)
i
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The above equation can be written in a vector form:
Bk, £+ 1)> =H(Kk) |§(k, 1) (9)

where |@(k, 1) is the fluctuation vector with component §,(k, t), i..,

~

Bk, 1)) = (§1, 62, 63,64, 65, 66)”
The matrix
H(k) = D(k) H, (10)
is the evolution operator, where
Ho=1+ (11)
and I is the identity matrix. The diagonal matrix
D(k) = diag(e™ 9, ¢'* &, e'* %) (12)

is the displacement operator

The eigenmodes of H(k) are the hydrodynamic and kinetic modes, and
the eigenvalues of H(k) are related to the transport coefficients of the
corresponding LGA or LBE model.":? By solving the eigenvalue problem
of H(k), one can study the generalized hydrodynamics of the model.'"

IV. ANALYTIC SOLUTIONS OF LINEARIZED LATTICE
BOLTZMANN EQUATION

Even though the eigenvalue problem of H(k) cannot be solved analyti-
cally in general, the inverse of H(&) can always be obtained exactly. There-
fore, one can obtain analytic solutions for some flows in which the bound-
ary conditions and forcing are simple. Although the procedure to obtain
the solution of LLBE (with appropriate boundary conditions) is general, it
will be illustrated using the 6-bit collision-saturated nondeterministic FHP
model, including all possible two-, three-, and four-body collisions. In this
case, H, is a circulant matrix"'" and is given by:

H0=Circ[h|,h2, h3, h4, h39h2] (13)

where h =1—d(1+3d), h,=d(1+4d)/2, hy=d/2, h,=—d(1+d), and
d=d(1-4d).
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Assuming that the system is driven by a time-independent force, whose
Fourier transform is |F(k)) = (F,(k), Fy(k),.., Fy(k))7, and that a time-
independent solution exists:

|Gk, t+ 1)) = |§(k, 1)) = |6(K)>
then Eq. (9) becomes:
|§k)> = H(K) |§(k)> + D(k) |F(k)> (14)
The solution of the above equation is
|§(k)> = [1—H(Kk)~'] D(k) |F(k)) (15)

Therefore, by specifying |F(k)) (or |F(x)) equivalently), one can always
obtain |@(k))> analytically, as well as the flow profile. In what follows, two
simple flows are analyzed: the Poiseuille flow and the plane Couette flow
in the two-dimensional space.

A. Poiseuille Flow

The Poiseuille flow is the uniformly forced flow between two parallel
plates."'?’ In the following analysis, the flow (in the two-dimensional space)
considered is in the interval [0, L] on the y-axis, with periodic boundary
conditions in both X and y directions. We shall apply Discrete Fourier
Transform (DFT) (see the Appendix or ref. 13) of a set of N discrete data
points in the interval [0, L], and denote w,=exp(i2n/N), J,=L/N,
k,=kn, and y=nL/N. For the sake of convenience, we also assume L =2.

The forcing function in the Poiseuille flow is a square-wave function
along x-axis, ie., F{x)=F(y)*, where

F,, 0<y<l

F(”={—FO, l<y<2 (16)
That is, |F(y)) =1é,, > F(y), where
16, > =(8) «+ 85 rn e ) =(1,1/2, =172, =1, —1/2,1/2)"
For the above forcing function, the DFT of F(y) is:
F(2k+1)=f4‘f%’17+,, 0<k<N2-1 (17)
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Therefore, the DFT of the x-momentum, p., is
Polky=<é, |¢k)) =&, |[1—H(Kk)] "' Dk)I|é, > Fk,) (18)

where k is orthogonal to the direction of forcing, F. Henceforth,

3b
Py _ —1 ~ —
[N =H(HE)] ' D) |é, > a+—_2sin2(kv,,5),/2) (19)
where
20,+30,—1 (2=3d—15d%)
= - =— — 20a
T2 332 —3d—632) (202)
o l=ha_ 3d(l~+2d2 _r (200)
1+4; (2-3d—6d4% 8v
and
Ay=1-3d(1+2d) (21a)
da=1—6d? (21b)

are the eigenvalues of H, corresponding to the two kinetic modes of
H,.!""? Therefore, from Eqgs. (17), (18), and (19), and with y =(2n+ 1)/N,
where ne {0, 1,.., N— 1}, we obtain (see details in the Appendix):

1 V-1 ] poy(l—y)+ 4p O<y<l
()=~ 5 (k w~(21\+|)n={ 0 ’ 22
P =g L Pdkywy ply—1y—2)—dp, 1<y<2 %
where
2
pozébNZF():éy_FO (23a)
4 8y
1
dp =7 (4a+3b) F, (23b)

and L,=./3 N/2 is twice of the channel width between the two plates in
lattice gas simulation.
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The term 4dp in Eq.(22) represents a slip at boundary. In the con-
tinuum limit (N — o, d > 0) and with an appropriate scaling between N
and d, ie., d— d,/N*?, where d, is a constant,

2
a~s (24a)
3d
b~—
3 (24b)
then
. py) Poy(1—y)+4p, O<y<i
1 /= p— 2
o, e =) {ﬁo(y—l)(y—Z)—Aﬁ, 1<y<z
d— dy/N?3
where
_ 9
Po=—"Fo (26a)
2
3d;

Therefore, with an appropriate scaling between N and d, the slip exists
under the continuum limit.

A few comments are in order for the slip momentum 4p. It is obvious
that in the low density limit d — 0,

Ap~d2~1? (27)

where / is the mean-free-path.* '>) This means that the slip is related to the
mean-free-path / (or Knudsen number K,) in the low density limit. In other
words, the slip velocity would diminish as the mean-free-path (or Knudsen
number K,) goes to zero in the limit of N — co while the density d is
remained as a constant. The slip phenomenon has been studied since the
time of Maxwell,''®’ and there exit recent results of molecular dynamics
(MD) simulations to study to slip."'” '®) Our results here qualitatively con-
firm the previous results of MD simulations in term of the dependence of
the slip on the mean-free-path (or Knudsen number K,,).!'”

822/88/3-4-25



920 Luo

B. Plane Couette Flow

The plane Couette flow is the flow between two parallel plates moving
in opposite directions with constant speeds. In the case considered here, the
two plates move in opposite directions, but with the same speed. The
forcing term for the plane Couette flow is

F(y)=Fdy)—do(y—1}= (28)
The DFT of the above forcing function is
Fok+1)=2F, 0<k<N2—1 (29)

Then, the DFT of the x-momentum is

o 5N For)— __Eb_>
Puk)=<&, |[1—H(k)] ' D(k) &, > Fk)=2F, (“ T2 sinik, 0,/2)

(30)

and the inverse DFT of the x-momentum across the channel is (see details
in the Appendix):

(po +4p), y=0
1 vzt po(1=2p) 0<y<l
py)=— p (k) wy = ' (31)
Y N kg‘o r v —(po+4p), y=1
pol2y —3), l<y<2
where y=(2n+1)/N,ne{0,1,., N—1},
Po=3bNF, (32a)
Ap =aF, (32b)

and a and b are given by Eq. (20). Again, the above equation shows that
the momentum profile has a slip (discontinuity) at wall. Similar to the
Poiseuille flow, the slip exits under the continuum limit ¥N— oo and
d—d,/N'?, where d, is a constant,

(Po+4p), y=0
lim ——7=p.(y)= _ _ (33)
R N7 —(po+4p), y=1

Po(2y —3), l<y<2
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where p, and 4p are given by Eq. (26), with a different d,,. The distinction
between the plane Couette flow and the Poiseuille flow in the continuum
limit is that the scaling between N and d is different under the continuum
limit. This difference is apparently due to the difference in the forcing: For
the Poiseuille flow the forcing is two-dimensional, whereas for the Couette
flow it is one-dimensional.

V. NUMERICAL RESULTS

Numerical simulations with 6-bit FHP LGA model are performed to
test the accuracy of the linearized theory. The analytic results are compared
with results of LGA simulations. The setup of the LGA simulation for the
Poiseuille flow is as follows: The plates are placed parallel to the velocity
direction (€,) and periodic boundary conditions are applied. The system
size is N, x N, =512 x32. The forcing is a square-wave function between
the plates. It is of uniform magnitude on sites 1 < y <N /2 and of opposite
uniform magnitude on sites N./24+ 1< y<N,. ‘

For the LGA simulations, the microscopic rules of applying uniform
body force are described in Fig. (1). The uniform body force is achieved by
assigning a random number r, 0 <r <1, to each site at each time step, after
collision and advection process have taken place, the microscopic forcing
rules described in Fig. 1 are executed if r < r, and if the rule is allowed at a
particular site. The forcing magnitude, F,, is related to the probability r, by

Fo=2r,d(1 —d) (34)

Input State Output State

3 2
4 1
o] 6
L
Fig. 1. Forcing rules of FHP 6-bit models. In the left column are the states before the

forcing, Those in the right column are after forcing. Each successful application of the forcing
rule adds one unit of momentum to the system. The solid arrows indicate occupied states
while the hollow ones indicate vacant states. States not indicated may be either occupied or
vacant.
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for the forcing rules of Fig. 1.*®) Upon each successful forcing application,
the system gains one unit of momentum in the ¥ direction. The momentum
profile is obtained by averaging over x direction and an interval of time
after a number of iterations initially.

In Fig. 2, the momentum profile of the forced flow between parallel
plates (the Poiseuille flow)"'® from the above analysis and LGA simula-
tions are compared. Note that, in Fig. 2, the discontinuity of the momen-
tum profiles at the boundaries (the slip momentum) is accurately predicted
by the analysis. This phenomenon is a manifestation of the kinetic effect
due to a finite mean-free-path.!'”-'®

In Fig. 3, the momentum profile of the plane Couette flow from the
above analysis and LGA simulations are compared. The arrangement for
the LGA simulation of the Couette flow is the same as for the Poiseuille
flow, but the uniform forcing is only applied on two rows: y=1 and
y=N/2 + 1, with the same magnitude and opposite directions. The system
size for this simulations is N, x N, = 16384 x 32. The momentum profile
is obtained by averaging over x direction and an interval of time after a
number of iterations initially. Although the slip along the boundary is well
captured by the theoretical analysis, a systematic discrepancy between the
analytic result (straight line) and the numerical result from the LGA

I.OF

momentum p,
o
14

0.0 1 s

1 6 11 16
channel width

Fig. 2. Momentum profile of Poiseuille flow for density per link ¢ =0.2 and a channel width
of 16 lattice sites. The system size is ¥, x N.=512x32. To obtain a steady state, 10° time
iterations were run before the averaging. The momentum p, is averaged over N, and over
2 % 10° time iterations. The analytic result of Eq. (22) is represented by the solid line and the
LGA simulation by 0. The graph is rescaled so that p,, =1. Note the agreement for the
non-zero momentum at the walls (slip velocity) due to finite mean free path. The simulation
was run on a CRAY Y-MP, with the forcing magnitude F,, > 1.0641 x 107,
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Fig. 3. Momentum profile of plane Couette flow for density per link ¢ =0.2 and a channel
width of 16 lattice sites. The system size is N, x N, =16384 x 32. The probability of applying
forcing is 0.06. To obtain a steady state, 107 time iterations were run before the averaging. The
momentum, p., is averaged over N, and over 2 x [0* time iterations. The analytic result of
Eq. (31) is represented by the solid line and the LGA simulation by * x” and * +”. The graph
is rescaled so that p,,, = 1. The simulation was run on a CM-200 computer.

simulation (plus signs) is observed. The discrepancy can be attributed to
the linearization of the collision operator, which is the only approximation
made in our analysis.

Vi. CONCLUSION AND DISCUSSION

The analysis and numerical findings presented here confirm what has
been found in molecular dynamics simulations in terms of the dependence
of the slip momentum on mean-free-path / or Knudsen number X,."'"'*)
Our theoretical analysis is also consistent with the theoretical results in
ref. 19. In more general terms, our results demonstrate that hydrodynamics
does apply quantitatively in very small scales comparable to the mean-free-
path in the system.®>2"" However, kinetic effects are also visible in the
small scales. Furthermore, it has been shown that, for both the Poiseuille
flow and the plane Couette flow modeled by lattice-gas automata, velocity
profiles for the both flows consist a part which satisfies the Navier—Stokes
equation, and a part (the slip at wall) which is due to the kinetic effect of
a finite mean-free-path and cannot be described by the Navier—Stokes
equation,''?

In conclusion, solutions of the linearized lattice Boltzmann equation
for simple flows can be obtained analytically with the method described in
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this paper. The kinetic effects due to a finite mean-free-path have been
analyzed quantitatively, and accurate agreements with LGA simulations
were found. The method described here can certainly be applied to other
LGA or LBE models in two or three dimensions.

APPENDIX: DISCRETE FOURIER TRANSFORM
The discrete Fourier Transform (DFT) of a set of N data points,
f, = f(x,), in the interval xe[0, L], is defined as

N—1
fi= Y fowk, for 0<k<N-—1 (A1)

n=0

where 7, = f(k), and wy = exp(i2n/N). The inverse DFT is
1 N
== 2 fiwy™,  for 0<n<N-—1 (A2)
N k=0

If Nis even and f, , yo= —f,, then

fou=0 (A3}

- N2
Su1=2Y fwFrbr o for 0<k<N2-1 (A4)

n=0

With the following results,

M—1 l—rM

T (A%
MU i1 =My MM

N (A%)
Mot L, 2r=r) r+ M -1 M) MM

"= (1—r)F (1-r)? o l—r (ASc)

n=0

and with the substitutions of M =N/2 and r=w* "', we can obtain the
following DFT’s for 0 <k< N2—1:
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fu=6(n),  fuii=2 (A6a)
~ 4
fi=1 fzk+|=w‘1 (A6b)
- N 42k +1
f;1=n’ f2k+l=1_w%\-+]+(1_w})\%vk+|)2 (A6C)
- N2 2(N—2) w2k+l
f;r=n29 f2k+1=2(1_w_’}7_vk+l) (I_WZNI\+AII)2
8w2k+l
T (nea)
and the following inverse DFT’s for 0<n< N2 - 1:
- 4w2k+l
Srue1= _(1—_WN_;}1V/FT|—)2
1 N—4dn
= , = A7
sin*(n(2k + 1)/N) t 4 (A7)
- 16 2k + 1 ,
Frir= — f= =2+ (N=2)n+ N2 (A8)
(I—wg )

With the above results and the substitution of y = (2n + 1)/N, the results of
momentum profiles in Section IV can be easily obtained.
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